Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Infect Dis ; 9(10): 1993-2004, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37774412

RESUMO

By illuminating key 6-azasteroid-protein interactions in both Mycobacterium tuberculosis (Mtb) and the closely related model organism Mycobacterium marinum (Mm), we sought to improve the antimycobacterial potency of 6-azasteroids and further our understanding of the mechanisms responsible for their potentiation of the antituberculosis drug bedaquiline. We selected a newly developed 6-azasteroid analog and an analog reported previously (ACS Infect. Dis. 2019, 5 (7), 1239-1251) to study their phenotypic effects on Mtb and Mm, both alone and in combination with bedaquiline. The 6-azasteroid analog, 17ß-[N-(4-trifluoromethoxy-diphenylmethyl)carbamoyl]-6-propyl-azaandrostan-3-one, robustly potentiated bedaquiline-mediated antimycobacterial activity, with a nearly 8-fold reduction in Mm bedaquiline minimal inhibitory concentration (85 nM alone versus 11 nM with 20 µM 6-azasteroid). This analog displayed minimal inhibitory activity against recombinant mycobacterial 3ß-hydroxysteroid dehydrogenase, a previously identified target of several 6-azasteroids. Dose-dependent potentiation of bedaquiline by this analog reduced mycobacterial intracellular ATP levels and impeded the ability of Mtb to neutralize exogenous oxidative stress in culture. We developed two 6-azasteroid photoaffinity probes to investigate azasteroid-protein interactions in Mm whole cells. Using bottom-up mass spectrometric profiling of the cross-linked proteins, we identified eight potential Mm/Mtb protein targets for 6-azasteroids. The nature of these potential targets indicates that proteins related to oxidative stress resistance play a key role in the BDQ-potentiating activity of azasteroids and highlights the potential impact of inhibition of these targets on the generation of drug sensitivity.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Azasteroides/química , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo
3.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395315

RESUMO

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Assuntos
Hanseníase , Mycobacterium leprae , Trifosfato de Adenosina , Colesterol , Humanos , Lipídeos
4.
RSC Chem Biol ; 2(2): 423-440, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928253

RESUMO

Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.

5.
ACS Infect Dis ; 7(6): 1739-1751, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33826843

RESUMO

The unique ability of Mycobacterium tuberculosis (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes from the Cho-region (genomic locus responsible for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products catalyze two sequential stereospecific hydration and dehydrogenation steps in the ß-oxidation of the cholesterol side chain. ChsH3 favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA in contrast to the previously reported EchA19 (Rv3516), which catalyzes formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes dehydrogenation of the ChsH3 product but not the EchA19 product. The X-ray crystallographic structure of the ChsB1 apo-protein was determined at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including a Rossmann-fold motif, but exhibits a unique substrate binding site architecture that is of greater length and width than its homologous counterparts, likely to accommodate the bulky steroid substrate. Intriguingly, Mtb utilizes hydratases from the MaoC-like family in sterol side-chain catabolism in contrast to fatty acid ß-oxidation in other species that utilize the evolutionarily distinct crotonase family of hydratases.


Assuntos
Mycobacterium tuberculosis , Colesterol , Coenzima A , Enoil-CoA Hidratase/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxirredução
6.
s.l; s.n; 2021. 14 p. tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, CONASS, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1293071

RESUMO

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Assuntos
Humanos , Hanseníase , Mycobacterium leprae , Trifosfato de Adenosina , Colesterol , Lipídeos
7.
ACS Infect Dis ; 6(8): 2214-2224, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32649175

RESUMO

Cholesterol is a major carbon source for Mycobacterium tuberculosis (Mtb) during infection, and cholesterol utilization plays a significant role in persistence and virulence within host macrophages. Elucidating the mechanism by which cholesterol is degraded may permit the identification of new therapeutic targets. Here, we characterized EchA19 (Rv3516), an enoyl-CoA hydratase involved in cholesterol side-chain catabolism. Steady-state kinetics assays demonstrated that EchA19 preferentially hydrates cholesterol enoyl-CoA metabolite 3-oxo-chol-4,22-diene-24-oyl-CoA, an intermediate of side-chain ß-oxidation. In addition, succinyl-CoA, a downstream catabolite of propionyl-CoA that forms during cholesterol degradation, covalently modifies targeted mycobacterial proteins, including EchA19. Inspection of a 1.9 Å resolution X-ray crystallography structure of Mtb EchA19 suggests that succinylation of Lys132 and Lys139 may perturb enzymatic activity by modifying the entrance to the substrate binding site. Treatment of EchA19 with succinyl-CoA revealed that these two residues are hotspots for succinylation. Replacement of these specific lysine residues with negatively charged glutamate reduced the rate of catalytic hydration of 3-oxo-chol-4,22-diene-24-oyl-CoA by EchA19, as does succinylation of EchA19. Our findings suggest that succinylation is a negative feedback regulator of cholesterol metabolism, thereby adding another layer of complexity to Mtb physiology in the host. These regulatory pathways are potential noncatabolic targets for antimicrobial drugs.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Colesterol , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Cinética , Mycobacterium tuberculosis/metabolismo
8.
Biochemistry ; 59(10): 1113-1123, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32101684

RESUMO

Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α2ß2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3aα-H-4α(3'-propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ΔipdE1 and ΔipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the α- and ß-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3aα-H-4α(3'-prop-1-enoate)-7aß-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via ß-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an α2ß2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Acil-CoA Desidrogenase/fisiologia , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Esteroides/metabolismo
9.
Biochemistry ; 58(41): 4224-4235, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31568719

RESUMO

Cholesterol catabolism plays an important role in Mycobacterium tuberculosis's (Mtb's) survival and persistence in the host. Mtb exploits three ß-oxidation cycles to fully degrade the side chain of cholesterol. Five cistronic genes in a single operon encode three enzymes, 3-oxo-4-pregnene-20-carboxyl-CoA dehydrogenase (ChsE1-ChsE2), 3-oxo-4,17-pregnadiene-20-carboxyl-CoA hydratase (ChsH1-ChsH2), and 17-hydroxy-3-oxo-4-pregnene-20-carboxyl-CoA retro-aldolase (Ltp2), to perform the last ß-oxidation cycle in this pathway. Among these three enzymes, ChsH1-ChsH2 and Ltp2 form a protein complex that is required for the catalysis of carbon-carbon bond cleavage. In this work, we report the structure of the full length ChsH1-ChsH2-Ltp2 complex based on small-angle X-ray scattering and single-particle electron microscopy data. Mutagenesis experiments confirm the requirement for Ltp2 to catalyze the retro-aldol reaction. The structure illustrates how acyl transfer between enzymes may occur. Each protomer of the ChsH1-ChsH2-Ltp2 complex contains three protein components: a chain of ChsH1, a chain of ChsH2, and a chain of Ltp2. Two protomers dimerize at the interface of Ltp2 to form a heterohexameric structure. This unique heterohexameric structure of the ChsH1-ChsH2-Ltp2 complex provides entry to further understand the mechanism of cholesterol catabolism in Mtb.


Assuntos
Proteínas de Bactérias/química , Colesterol/metabolismo , Enoil-CoA Hidratase/química , Frutose-Bifosfato Aldolase/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Proteínas de Bactérias/metabolismo , Biocatálise , Enoil-CoA Hidratase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Ligantes , Microscopia Eletrônica , Mutagênese , Mycobacterium tuberculosis/genética , Óperon , Plasmídeos/genética , Multimerização Proteica , Subunidades Proteicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Chem Rev ; 119(12): 7718, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31058490
11.
ACS Infect Dis ; 5(7): 1239-1251, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31012313

RESUMO

One-third of the world's population carries Mycobacterium tuberculosis (Mtb), the infectious agent that causes tuberculosis (TB), and every 17 s someone dies of TB. After infection, Mtb can live dormant for decades in a granuloma structure arising from the host immune response, and cholesterol is important for this persistence of Mtb. Current treatments require long-duration drug regimens with many associated toxicities, which are compounded by the high doses required. We phenotypically screened 35 6-azasteroid analogues against Mtb and found that, at low micromolar concentrations, a subset of the analogues sensitized Mtb to multiple TB drugs. Two analogues were selected for further study to characterize the bactericidal activity of bedaquiline and isoniazid under normoxic and low-oxygen conditions. These two 6-azasteroids showed strong synergy with bedaquiline (fractional inhibitory concentration index = 0.21, bedaquiline minimal inhibitory concentration = 16 nM at 1 µM 6-azasteroid). The rate at which spontaneous resistance to one of the 6-azasteroids arose in the presence of bedaquiline was approximately 10-9, and the 6-azasteroid-resistant mutants retained their isoniazid and bedaquiline sensitivity. Genes in the cholesterol-regulated Mce3R regulon were required for 6-azasteroid activity, whereas genes in the cholesterol catabolism pathway were not. Expression of a subset of Mce3R genes was down-regulated upon 6-azasteroid treatment. The Mce3R regulon is implicated in stress resistance and is absent in saprophytic mycobacteria. This regulon encodes a cholesterol-regulated stress-resistance pathway that we conclude is important for pathogenesis and contributes to drug tolerance, and this pathway is vulnerable to small-molecule targeting in live mycobacteria.


Assuntos
Antituberculosos/farmacologia , Azasteroides/farmacologia , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Azasteroides/química , Proteínas de Bactérias/efeitos dos fármacos , Diarilquinolinas/química , Diarilquinolinas/farmacologia , Regulação para Baixo , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isoniazida/química , Isoniazida/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/genética , Regulon , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
12.
Chem Rev ; 118(4): 1887-1916, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29384369

RESUMO

Current tuberculosis (TB) drug development efforts are not sufficient to end the global TB epidemic. Recent efforts have focused on the development of whole-cell screening assays because biochemical, target-based inhibitor screens during the last two decades have not delivered new TB drugs. Mycobacterium tuberculosis (Mtb), the causative agent of TB, encounters diverse microenvironments and can be found in a variety of metabolic states in the human host. Due to the complexity and heterogeneity of Mtb infection, no single model can fully recapitulate the in vivo conditions in which Mtb is found in TB patients, and there is no single "standard" screening condition to generate hit compounds for TB drug development. However, current screening assays have become more sophisticated as researchers attempt to mirror the complexity of TB disease in the laboratory. In this review, we describe efforts using surrogates and engineered strains of Mtb to focus screens on specific targets. We explain model culture systems ranging from carbon starvation to hypoxia, and combinations thereof, designed to represent the microenvironment which Mtb encounters in the human body. We outline ongoing efforts to model Mtb infection in the lung granuloma. We assess these different models, their ability to generate hit compounds, and needs for further TB drug development, to provide direction for future TB drug discovery.


Assuntos
Antituberculosos/uso terapêutico , Descoberta de Drogas , Genoma Humano , Granuloma/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Granuloma/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...